| Funder                    | Project Title                                                                                        | Funding   | Institution                                           |
|---------------------------|------------------------------------------------------------------------------------------------------|-----------|-------------------------------------------------------|
| Autism Research Institute | Unique Mitochondrial Dysfunction in Autism Spectrum Disorder                                         | \$20,000  | University of Arkansas                                |
| Autism Research Institute | Proteomic Studies of Autistic Brain                                                                  | \$25,650  | Cleveland Clinic                                      |
| Autism Research Institute | A Quantitative Study of Pyramidal Cells and Interneurons in the Cerebral Cortex                      | \$20,000  | University of South Carolina, Greenville              |
| Autism Science Foundation | Role of an autism-related cytokine in a genetic model of ASD                                         | \$25,000  | University of California, San Diego                   |
| Autism Science Foundation | Study of a potentially novel biomarker for features of ASD                                           | \$25,000  | Johns Hopkins University                              |
| Autism Science Foundation | Calcium Channels as a Core Mechanism in the Neurobiology of ASD                                      | \$0       | Massachusetts General Hospital                        |
| Autism Science Foundation | Brain Somatic Mosaicism at ASD-Associated Loci                                                       | \$0       | University of Michigan                                |
| Autism Science Foundation | Mechanisms of sensory processing in ASD                                                              | \$25,000  | University of Rochester                               |
| Autism Science Foundation | Undergraduate Research Award                                                                         | \$3,000   | Children's Hospital of Philadelphia                   |
| Autism Science Foundation | Genetic mutations in chromosome 16 and their role in autism                                          | \$25,000  | University of Texas Southwestern Medical Center       |
| Autism Science Foundation | Genetics Behind Brain Connectivity in ASD                                                            | \$0       | University of Texas Southwestern Medical Center       |
| Autism Speaks             | Dissecting the 16p11.2 CNV endophenotype in induced pluripotent stem cells                           | \$0       | University of California, San Francisco               |
| Autism Speaks             | Identification and validation of genetic variants which cause the Autism Macrocephaly subphenotype   | \$0       | University of California, Los Angeles                 |
| Autism Speaks             | Alterations of the human brain structural connectome in preschool aged children with ASD             | \$30,000  | University of California, Davis                       |
| Autism Speaks             | Cortical Markers of Central Auditory Processing Disorder in Minimally Verbal Children with ASD       | \$30,400  | Boston University                                     |
| Autism Speaks             | PET/MRI investigation of neuroinflammation in autism spectrum disorders                              | \$0       | Massachusetts General Hospital                        |
| Autism Speaks             | Classifying autism etiology by expression networks in neural progenitors and differentiating neurons | \$0       | Massachusetts General Hospital                        |
| Autism Speaks             | Folate receptor autoimmunity in Autism Spectrum Disorders                                            | \$0       | State University of New York Downstate Medical Center |
| Autism Speaks             | Foundation Associates agreement (BrainNet)                                                           | \$375,000 | Foundation Associates, LLC                            |
| Autism Speaks             | Investigating Shank3 function during synaptogenesis in mice to define a therapeutic window for ASD.  | \$30,000  | Duke University                                       |
| Autism Speaks             | Evaluating the association between parental broader autism phenotype and child ASD phenotype         | \$30,400  | University of North Carolina at Chapel Hill           |
| Autism Speaks             | Neural Synchrony and Plasticity in Children with Autism                                              | \$0       | University of North Carolina at Chapel Hill           |
| Autism Speaks             | Cell-type and circuit-specific functional deficits in cortex from gene disruptions linked to autism  | \$0       | University of North Carolina at Chapel Hill           |
| Autism Speaks             | Anti-Neuronal Autoantibodies against Bacterial<br>Polysaccharides in Autism Spectrum Disorders       | \$0       | University of Oklahoma Health Sciences Center         |
| Autism Speaks             | Neurobiological foundations of self-conscious emotion understanding in adolescents with ASD          | \$30,000  | University of Oregon                                  |

| Funder                               | Project Title                                                                                                                                                                                | Funding   | Institution                                |
|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------------------------------------|
| Autism Speaks                        | Na+-H+ Exchanger Mechanisms in Autism<br>Pathophysiology and Treatment                                                                                                                       | \$0       | Brown University                           |
| Autism Speaks                        | Temporal divergence of hypoconnectivity and excitotoxicity in Rett syndrome                                                                                                                  | \$215,784 | Vanderbilt University                      |
| Autism Speaks                        | Nonsocial Interests and Reward Processing in Autism<br>Spectrum Disorders                                                                                                                    | \$30,000  | Vanderbilt University                      |
| Autism Speaks                        | Behavioral and Neural Variability in Autism Spectrum Disorder                                                                                                                                | \$0       | Vanderbilt University                      |
| Autism Speaks                        | Elucidating synapse-specific defects underlying autism                                                                                                                                       | \$30,400  | University of Utah                         |
| Autism Speaks                        | CYFIP function/s in brain: insights into Autism Spectrum Disorders                                                                                                                           | \$117,500 | Vlaams Instituut voor Biotechnologie       |
| Autism Speaks                        | Monitoring Treatment-Induced Neuroanatomical Changes in a Mouse Model of Rett Syndrome                                                                                                       | \$30,000  | The Hospital for Sick Children             |
| Brain & Behavior Research Foundation | The Interplay Between Human Astrocytes and Neurons in Psychiatric Disorders                                                                                                                  | \$75,000  | University of California, San Diego        |
| Brain & Behavior Research Foundation | Developing Neural Markers to Evaluate Social Skills<br>Training in ASD                                                                                                                       | \$35,000  | California Institute of Technology         |
| Brain & Behavior Research Foundation | Signaling Pathways that Regulate Excitatory-inhibitory Balance                                                                                                                               | \$35,000  | University of California, San Diego        |
| Brain & Behavior Research Foundation | Interrogating Synaptic Transmission in Human Neurons                                                                                                                                         | \$17,500  | Stanford University                        |
| Brain & Behavior Research Foundation | Abnormal connectivity in autism                                                                                                                                                              | \$14,881  | University of Southern California          |
| Brain & Behavior Research Foundation | Corticogenesis and Autism Spectrum Disorders: New Hypotheses on Transcriptional Regulation of Embryonic Neurogenesis by FGFs from In Vivo Studies and RNA-sequencing Analysis of Mouse Brain | \$0       | Yale University                            |
| Brain & Behavior Research Foundation | Excitatory/Inhibitory Imbalance in Autism and Early-<br>course Schizophrenia                                                                                                                 | \$14,931  | Yale University                            |
| Brain & Behavior Research Foundation | Reconceptualizing Brain Connectivity and Development in Autism                                                                                                                               | \$35,000  | University of Miami                        |
| Brain & Behavior Research Foundation | The Study of Homeostatic Downscaling in Psychiatric Disorders                                                                                                                                | \$35,000  | University of Illinois at Urbana-Champaign |
| Brain & Behavior Research Foundation | Multimodal Characterization of the Brain Phenotype in Children with Duplication of the 7q11.23 Williams Syndrome Chromosomal Region: A Well-defined Genetic Model for Autism                 | \$100,000 | National Institutes of Health              |
| Brain & Behavior Research Foundation | A Novel GABA Signalling Pathway in the CNS                                                                                                                                                   | \$25,000  | McLean Hospital                            |
| Brain & Behavior Research Foundation | Role of Serotonin Signaling during Neural Circuitry Formation in Autism Spectrum Disorders                                                                                                   | \$15,000  | Massachusetts Institute of Technology      |
| Brain & Behavior Research Foundation | Genotype to Phenotype Association in Autism Spectrum Disorders                                                                                                                               | \$32,500  | Massachusetts General Hospital             |
| Brain & Behavior Research Foundation | Advancing a Biomarker of Disrupted GABAergic<br>Neurotransmission in Autism                                                                                                                  | \$17,500  | Massachusetts Institute of Technology      |

| Funder                               | Project Title                                                                                                                                                                                 | Funding  | Institution                                    |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------------------------------------|
| Brain & Behavior Research Foundation | Rapid Phenomic Interrogation of CRISPR-Cas9 Edited Mammalian Brains                                                                                                                           | \$35,000 | Massachusetts Institute of Technology          |
| Brain & Behavior Research Foundation | Modeling Microglial Involvement in Autism Spectrum Disorders, with Human Neuro-glial Co-cultures                                                                                              | \$35,000 | Whitehead Institute for Biomedical Research    |
| Brain & Behavior Research Foundation | Rebuilding Inhibition in the Autistic Brain                                                                                                                                                   | \$49,680 | Brandeis University                            |
| Brain & Behavior Research Foundation | Dysfunction of Cortical Systems for Language and Working Memory in Autism Spectrum Disorder                                                                                                   | \$17,500 | Boston University                              |
| Brain & Behavior Research Foundation | Neural Basis of Deficits in Multisensory Integration in Schizophrenia and ASD                                                                                                                 | \$17,500 | Columbia University                            |
| Brain & Behavior Research Foundation | Cellular Mechanisms Controlling White Matter<br>Connectivity: Making Sense of a Genetic Risk Factor for<br>Autism and Schizophrenia                                                           | \$35,000 | Columbia University                            |
| Brain & Behavior Research Foundation | Antigenic Specificity and Neurological Effects of<br>Monoclonal Anti-brain Antibodies Isolated from Mothers<br>of a Child with Autism Spectrum Disorder: Toward<br>Protection Studies         | \$35,000 | The Feinstein Institute for Medical Research   |
| Brain & Behavior Research Foundation | Modeling Pitt-Hopkins Syndrome, an Autism Spectrum Disorder, in Transgenic Mice Harboring a Pathogenic Dominant Negative Mutation in TCF4                                                     | \$0      | University of North Carolina at Chapel Hill    |
| Brain & Behavior Research Foundation | In vivo Imaging of Prefrontal Cortical Activity During Social Interactions in Normal and Autism Mice                                                                                          | \$35,000 | Duke University                                |
| Brain & Behavior Research Foundation | A Massively Parallel Approach to Functional Testing of PTEN Mutations                                                                                                                         | \$34,710 | Oregon Health & Science University             |
| Brain & Behavior Research Foundation | Interpersonal Neural Coordination During Social Interaction in Children with Autism Spectrum Disorders                                                                                        | \$34,970 | University of Pittsburgh                       |
| Brain & Behavior Research Foundation | Evoked Neurotransmitter and Neurochemical Amygdala<br>Responses and Autonomic Arousal to Social Threat and<br>Safety Signals in Typically Developing and Autistic<br>Children and Adolescents | \$35,000 | University of Wisconsin-Madison                |
| Brain & Behavior Research Foundation | Mechanisms of elF4E-dependent Translational Control in Autism                                                                                                                                 | \$66,667 | McGill University                              |
| Brain & Behavior Research Foundation | Autism Linked LRRTM4-Heparan Sulphate Proteoglycan Complex Functions in Synapse Development                                                                                                   | \$0      | University of Manitoba                         |
| Brain & Behavior Research Foundation | Developmental Role of Prefrontal Cortex-raphe Circuits in Stress and Mood Disorders                                                                                                           | \$17,500 | INSERM                                         |
| Brain & Behavior Research Foundation | a-Actinin Regulates Postsynaptic AMPAR Targeting by Anchoring PSD-95                                                                                                                          | \$19,748 | University of Tuebingen                        |
| Department of Defense - Army         | Altered placental tryptophan metabolism: A crucial molecular pathway for the fetal programming of neurodevelopmental disorders                                                                | \$0      | University of Southern California              |
| Department of Defense - Army         | Neural Correlates of the Y Chromosome in Autism: XYY Syndrome as a Genetic Model                                                                                                              | \$0      | Nemours Children's Health System, Jacksonville |
| Department of Defense - Army         | DISRUPTION OF TROPHIC INHIBITORY SIGNALING IN AUTISM SPECTRUM DISORDERS                                                                                                                       | \$0      | Northwestern University                        |

| Funder                        | Project Title                                                                                       | Funding   | Institution                                        |
|-------------------------------|-----------------------------------------------------------------------------------------------------|-----------|----------------------------------------------------|
| Department of Defense - Army  | BRAIN MECHANISMS OF AFFECTIVE LANGUAGE<br>COMPREHENSION IN AUTISM SPECTRUM<br>DISORDERS             | \$0       | University of Maryland, College Park               |
| Department of Defense - Army  | Mechanisms of synaptic alterations in a neuroinflammation model of autism                           | \$0       | University of Nebraska Medical Center              |
| Department of Defense - Army  | IMPLICIT LEARNING ABILITIES PREDICT<br>TREATMENT RESPONSE IN AUTISM SPECTRUM<br>DISORDERS           | \$0       | Weill Cornell Medical College                      |
| Department of Defense - Army  | MATERNAL BRAIN-REACTIVE ANTIBODIES AND AUTISM SPECTRUM DISORDER                                     | \$0       | Feinstein Institute for Medical Research           |
| Department of Defense - Army  | Neural Correlates of the Y Chromosome in Autism: XYY Syndrome as a Genetic Model                    | \$0       | Children's Hospital of Philadelphia                |
| Department of Defense - Army  | The role of the new mTOR complex, mTORC2, in autism spectrum disorders                              | \$0       | Baylor College of Medicine                         |
| Department of Defense - Army  | Forward Genetic Screen to Identify Novel Therapeutic<br>Entry Points of an Autism Spectrum Disorder | \$587,878 | Baylor College of Medicine                         |
| Department of Defense - Army  | Brain Network Activation Patterns in Autism Due to<br>Genomic Copy Number Variation                 | \$562,429 | Baylor College of Medicine                         |
| lational Institutes of Health | GABAergic Neurophysiology in Autism Spectrum<br>Disorder                                            | \$195,048 | Stanford University                                |
| National Institutes of Health | ACE Center: Neuroimaging signatures of autism: Linking brain function to genes and behavior         | \$188,264 | University of California, Los Angeles              |
| National Institutes of Health | ACE Center: Genetic and genomic analyses to connect genes to brain to cognition in ASD              | \$251,358 | University of California, Los Angeles              |
| National Institutes of Health | Integrity and Dynamic Processing Efficiency of Networks in ASD                                      | \$620,386 | San Diego State University                         |
| National Institutes of Health | Heparan sulfate in neurophysiology and neurological disorders                                       | \$425,746 | Sanford Burnham Prebys Medical Discovery Institute |
| National Institutes of Health | Chromosomal Boundary Alterations Driving<br>Transcriptional Dysregulation in Brain Disorders        | \$492,319 | University of California, San Diego                |
| National Institutes of Health | Loss and rescue of endocannabinoid-dependent LTP and memory in Fragile-X model mice                 | \$460,044 | University of California, Irvine                   |
| National Institutes of Health | Characterization of Oxytocin Receptors in Autism<br>Spectrum Disorder                               | \$196,250 | University of California, Davis                    |
| National Institutes of Health | Cell-specific molecular mechanisms underlying brain pathology in ASD                                | \$157,000 | University of California, Davis                    |
| National Institutes of Health | Formation and Function of Circuitry for Vocal Learning                                              | \$361,456 | University of California, Los Angeles              |
| National Institutes of Health | Genetic models for social attachment deficits in psychiatric illness                                | \$184,131 | University of California, San Francisco            |
| National Institutes of Health | Mechanisms underlying word learning in fragile X syndrome and nonsyndromic ASD                      | \$156,917 | University of California, Davis                    |

| Funder                        | Project Title                                                                                           | Funding   | Institution                           |
|-------------------------------|---------------------------------------------------------------------------------------------------------|-----------|---------------------------------------|
| National Institutes of Health | Gaining insight into psychiatric disease by engineering piece by piece the human brain in vitro.        | \$489,075 | Stanford University                   |
| National Institutes of Health | Quantitative Measurements of Cortical Excitability in<br>Neurodevelopmental Disorder                    | \$197,500 | Stanford University                   |
| National Institutes of Health | Language Development in Fragile X Syndrome                                                              | \$498,095 | University of California, Davis       |
| National Institutes of Health | Proteogenetics of Autism Spectrum Disorders                                                             | \$583,992 | Scripps Research Institute            |
| National Institutes of Health | Brain Systems Supporting Learning and Memory in Children with Autism                                    | \$166,338 | Stanford University                   |
| National Institutes of Health | Linking Defects in Cortical Network Activity with Altered Sensory Perception in Fragile X Mice          | \$35,845  | University of California, Los Angeles |
| National Institutes of Health | Project 4: Calcium Signaling Defects in Autism (Pessah/Lein)                                            | \$115,417 | University of California, Davis       |
| National Institutes of Health | Characterizing the CHD8 Complex to Determine its Role in Autism Spectrum Disorder                       | \$43,576  | Stanford University                   |
| National Institutes of Health | Immune regulation and neurodevelopmental disorders                                                      | \$235,500 | University of California, Davis       |
| National Institutes of Health | Function and Structure Adaptations in Forebrain Development                                             | \$590,225 | Children's Hospital Los Angeles       |
| National Institutes of Health | Scalable technologies for genome engineering in hIPSCs                                                  | \$306,948 | University of California, San Diego   |
| National Institutes of Health | Chandellier interneurons and the excitation/inhibition balance in the human prefrontal cortex in autism | \$384,979 | University of California, Davis       |
| National Institutes of Health | Project 3: Immune Environment Interaction and Neurodevelopment                                          | \$116,018 | University of California, Davis       |
| National Institutes of Health | Brain Systems Underlying Episodic Memory for Social Stimuli in Childhood Autism                         | \$123,112 | Stanford University                   |
| National Institutes of Health | Decoding Neural Systems Underlying Affective Prosody in Children with Autism                            | \$172,398 | Stanford University                   |
| National Institutes of Health | Stem cell- based studies of gene-environment interactions in PTEN- associated autism                    | \$260,250 | University of California, Los Angeles |
| National Institutes of Health | Genotype-Phenotype Relationships in Fragile X Families                                                  | \$547,472 | University of California, Davis       |
| National Institutes of Health | GABRB3 and Placental Vulnerability in ASD                                                               | \$580,565 | Stanford University                   |
| National Institutes of Health | Induced neuronal cells: A novel tool to study neuropsychiatric diseases                                 | \$615,259 | Stanford University                   |
| National Institutes of Health | Effects of Social Gaze Training on Brain and Behavior in Fragile X Syndrome                             | \$353,914 | Stanford University                   |
| National Institutes of Health | Prenatal Origins of Neurometabolic Consequences                                                         | \$316,354 | University of California, Los Angeles |
| National Institutes of Health | The neurobiological basis of heterogeneous social and motor deficits in ASD                             | \$423,920 | University of Southern California     |
| National Institutes of Health | Evaluating the effect of splicing mutations on isoform networks in autism                               | \$420,427 | University of California, San Diego   |

| Funder                        | Project Title                                                                                                             | Funding     | Institution                             |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------------------|
| National Institutes of Health | Prefrontal corticothalamic circuits in autism                                                                             | \$178,646   | University of California, San Francisco |
| National Institutes of Health | Phenotyping Astrocytes in Human Neurodevelopmental Disorders                                                              | \$386,463   | Stanford University                     |
| National Institutes of Health | Role of Autism Susceptibility Gene, TAOK2 kinase, and its novel substrates in Synaptogenesis                              | \$121,022   | University of California, San Francisco |
| National Institutes of Health | Detecting the Transfer of Maternal Antibodies into the Fetal Rhesus Monkey Brain                                          | \$195,729   | University of California, Davis         |
| National Institutes of Health | Dissecting neural mechanisms integrating multiple inputs in C. elegans                                                    | \$485,000   | Salk Institute for Biological Studies   |
| National Institutes of Health | A computational framework for predicting the impact of mutations in autism                                                | \$431,352   | University of California, San Diego     |
| National Institutes of Health | Biology of Non-Coding RNAs Associated with<br>Psychiatric Disorders                                                       | \$416,850   | University of Southern California       |
| National Institutes of Health | Optogenetic treatment of social behavior in autism                                                                        | \$395,996   | University of California, Los Angeles   |
| National Institutes of Health | BDNF regulation of the cortical neuron transcriptome                                                                      | \$77,000    | University of Colorado Denver           |
| National Institutes of Health | Cortical Circuit Dysfunction in Fragile X Syndrome                                                                        | \$339,738   | University of Colorado Denver           |
| National Institutes of Health | Neurobiology of Autism With Macrocephaly                                                                                  | \$614,548   | Yale University                         |
| National Institutes of Health | The Social Brain in Schizophrenia and Autism Spectrum Disorders                                                           | \$419,139   | Hartford Hospital                       |
| National Institutes of Health | Neural Mechanisms for Social Interactions and Eye Contact in ASD                                                          | \$713,408   | Yale University                         |
| National Institutes of Health | Functional Genomics of Human Brain Development                                                                            | \$266,096   | Yale University                         |
| National Institutes of Health | 2/2 Somatic mosaicism and autism spectrum disorder                                                                        | \$694,098   | Yale University                         |
| National Institutes of Health | 2/2 Somatic mosaicism and autism spectrum disorder                                                                        | \$72,260    | Yale University                         |
| National Institutes of Health | Functional Analysis of Rare Variants in Genes<br>Associated with Autism                                                   | \$147,905   | Yale University                         |
| National Institutes of Health | Astrocytes contribution to tuberous sclerosis pathology                                                                   | \$249,750   | Yale University                         |
| National Institutes of Health | Components of Emotional Processing in Toddlers with ASD                                                                   | \$669,551   | Yale University                         |
| National Institutes of Health | Functional Genomics of Human Brain Development                                                                            | \$1,621,706 | Yale University                         |
| National Institutes of Health | Neural basis of working memory and inhibitory control in ASD Children using NIRS                                          | \$30,876    | Georgetown University                   |
| National Institutes of Health | Role of the intracellular signal integrator CC2D1A in the developing nervous system                                       | \$56,118    | George Washington University            |
| National Institutes of Health | Regulation of mTOR signaling in the developing cerebral cortex as a point of convergence for multiple autism risk factors | \$480,000   | Scripps Research Institute - Florida    |
| National Institutes of Health | Cognitive and Neural Flexibility in Autism                                                                                | \$474,322   | University of Miami                     |
| National Institutes of Health | Development and afferent regulation of auditory neurons                                                                   | \$380,000   | Florida State University                |

| Funder                        | Project Title                                                                                                   | Funding   | Institution                                |
|-------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------|--------------------------------------------|
| National Institutes of Health | Impact of SynGAP1 Mutations on Synapse Maturation and Cognitive Development                                     | \$614,568 | Scripps Research Institute - Florida       |
| National Institutes of Health | Development of a whole-brain cellular mapping approach in a genetic model of autism and intellectual disability | \$269,000 | Scripps Research Institute - Florida       |
| National Institutes of Health | Neural basis underlying autistic behaviors                                                                      | \$288,000 | Scripps Research Institute - Florida       |
| National Institutes of Health | ACE Center: Predicting risk and resilience in ASD through social visual engagement                              | \$354,189 | Emory University                           |
| National Institutes of Health | Predicting Voice Quality in ASD from Early Markers of Vocal Development                                         | \$67,078  | Emory University                           |
| National Institutes of Health | Decoding the RGS14 Interactome/Signalosome in CA2 hippocampal neurons                                           | \$234,000 | Emory University                           |
| National Institutes of Health | ACE Center: Predicting risk and resilience in ASD through social visual engagement                              | \$1       | Emory University                           |
| National Institutes of Health | Tet-mediated Epigenetic Modulation in Autism                                                                    | \$603,129 | Emory University                           |
| National Institutes of Health | Change in social adaptive action and brain connectivity in infants' first 6 months                              | \$165,939 | Emory University                           |
| National Institutes of Health | Tet-mediated Epigenetic Modulation in Autism                                                                    | \$117,000 | Emory University                           |
| National Institutes of Health | BPA, Cortical Development and Gene Expression: Implications for Autism                                          | \$236,192 | University of Illinois at Urbana-Champaign |
| National Institutes of Health | Abnormal Cerebellar Physiology and Development in the Autistic Brain                                            | \$43,576  | University of Chicago                      |
| National Institutes of Health | Chloride homeostasis and GABA maturation in fragile X syndrome                                                  | \$193,125 | Northwestern University                    |
| National Institutes of Health | Striatal Glutamate Signaling and Cognition in Autism Mouse Models                                               | \$225,619 | University of Illinois at Chicago          |
| National Institutes of Health | A Family-Genetic Study of Language in Autism                                                                    | \$661,091 | Northwestern University                    |
| National Institutes of Health | Understanding the Role of EPAC2 in Cognitive Function                                                           | \$48,576  | Northwestern University                    |
| National Institutes of Health | Perception and central coherence in autism: A family genetic eye-tracking study                                 | \$73,594  | Northwestern University                    |
| National Institutes of Health | A mouse model for AUTS2-linked neurodevelopmental disorders                                                     | \$228,838 | University of Illinois at Urbana-Champaign |
| National Institutes of Health | A Family-Genetic Study of Autism and Fragile X Syndrome                                                         | \$868,531 | Northwestern University                    |
| National Institutes of Health | Developmental Linkage of Metabolic Homeostasis and Sociality                                                    | \$281,746 | Indiana University                         |
| National Institutes of Health | Understanding the biology of language impairment through whole genome sequencing                                | \$628,737 | University of Iowa                         |
| National Institutes of Health | Determination of the Epigenetic Regulation of Gene<br>Transcription by MECP2 in Neurons                         | \$30,741  | University of Kentucky                     |

| Funder                        | Project Title                                                                                                              | Funding     | Institution                                |
|-------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------------------------|
| National Institutes of Health | Alterations to corticothalamic circuitry in a mouse model of autism                                                        | \$12,090    | Louisiana State University                 |
| National Institutes of Health | Alterations to corticothalamic circuitry in a mouse model of autism                                                        | \$110,270   | Louisiana State University                 |
| National Institutes of Health | Regulation of Neuroligins and Effects on Synapse<br>Number and Function                                                    | \$1,133,599 | National Institutes of Health              |
| National Institutes of Health | Brain Network Dynamics Contributing to Atypical Social Interaction in Autism                                               | \$523,573   | University of Maryland, College Park       |
| National Institutes of Health | The Cognitive Neuroscience of Autism Spectrum Disorders                                                                    | \$1,162,902 | National Institutes of Health              |
| National Institutes of Health | Cellular and Molecular Analysis of the Schizophrenia<br>and Autism Spectrum Disorder gene Transcription<br>Factor 4 (TCF4) | \$456,500   | Lieber Institute, Inc.                     |
| National Institutes of Health | Serotonin Receptor Subtypes as Pharmacotherapeutic<br>Targets in Autism                                                    | \$202,500   | Hussman Institute for Autism, Inc.         |
| National Institutes of Health | Somatosensory Inhibitory Dysfunction in Autism Spectrum Disorder.                                                          | \$585,789   | Johns Hopkins University                   |
| National Institutes of Health | Functional and Structural Optical Brain Imaging                                                                            | \$822,591   | National Institutes of Health              |
| National Institutes of Health | Developmental Neurogenomics Unit                                                                                           | \$2,390,943 | National Institutes of Health              |
| National Institutes of Health | A Multimodal Investigation of Inhibitory Dysfunction in Autism Spectrum Disorder                                           | \$82,734    | Johns Hopkins University                   |
| National Institutes of Health | Direct Examination of Imitation-Based Learning in Autism                                                                   | \$282,800   | Kennedy Krieger Institute                  |
| National Institutes of Health | Dynamic regulation of Shank3 and ASD                                                                                       | \$602,491   | Johns Hopkins University                   |
| National Institutes of Health | Role of somatic mosaicism in autism, schizophrenia, and bipolar disorder brain                                             | \$674,484   | Kennedy Krieger Institute                  |
| National Institutes of Health | Role of somatic mosaicism in autism, schizophrenia, and bipolar disorder brain                                             | \$163,315   | Kennedy Krieger Institute                  |
| National Institutes of Health | Thalamocortical circuit defects in developmental brain disorders                                                           | \$492,465   | University of Maryland, Baltimore          |
| National Institutes of Health | Roles of Oxytocin and Vasopressin in Brain                                                                                 | \$2,020,403 | National Institutes of Health              |
| National Institutes of Health | Impairments of Theory of Mind disrupt patterns of brain activity                                                           | \$319,719   | Massachusetts Institute of Technology      |
| National Institutes of Health | Functional connectivity substrates of social and non-<br>social deficits in ASD                                            | \$702,426   | Massachusetts General Hospital             |
| National Institutes of Health | Cortical Plasticity in Autism Spectrum Disorders                                                                           | \$437,648   | Beth Israel Deaconess Medical Center       |
| National Institutes of Health | Functional analysis of Neuroligin-Neurexin interactions in synaptic transmission                                           | \$366,406   | University of Massachusetts Medical School |
| National Institutes of Health | CRISPR/Cas9-Based Functional Characterization of ANK2 Mutations in ASD Neural Circuitry                                    | \$95,886    | Massachusetts General Hospital             |
| National Institutes of Health | M1 circuit dysfunction in MECP2 duplication syndrome                                                                       | \$282,068   | Brigham and Women's Hospital               |

| Funder                        | Project Title                                                                                                   | Funding     | Institution                           |
|-------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------|---------------------------------------|
| National Institutes of Health | Dissecting recurrent microdeletion syndromes using dual-guide genome editing                                    | \$580,798   | Massachusetts General Hospital        |
| National Institutes of Health | Mechanisms underlying word learning in children with ASD: Non-social learning and                               | \$172,195   | Boston University                     |
| National Institutes of Health | A Novel Essential Gene for Human Cognitive Function                                                             | \$31,881    | Harvard Medical School                |
| National Institutes of Health | 1/2-Somatic mosaicism and autism spectrum disorder                                                              | \$1,595,121 | Boston Children's Hospital            |
| National Institutes of Health | 1/2-Somatic mosaicism and autism spectrum disorder                                                              | \$101,700   | Boston Children's Hospital            |
| National Institutes of Health | Environmental Toxins and Microglia-Synapse<br>Interactions in Autism                                            | \$396,969   | Massachusetts General Hospital        |
| National Institutes of Health | Elucidating cutaneous mechanosensory circuits, from development to disease                                      | \$831,501   | Harvard Medical School                |
| National Institutes of Health | Deficits in KCC2 activity and the pathophysiology of Autism spectrum disorders                                  | \$206,250   | Tufts University Boston               |
| National Institutes of Health | Verbal/non-verbal asynchrony in adolescents with high-functioning Autism                                        | \$379,851   | Emerson College                       |
| National Institutes of Health | MRI Biomarkers of Patients with Tuberous Sclerosis<br>Complex and Autism                                        | \$728,507   | Boston Children's Hospital            |
| National Institutes of Health | Neurotrophic Factor Regulation of Gene Expression                                                               | \$622,854   | Harvard Medical School                |
| National Institutes of Health | The genomic bridge project (GBP)                                                                                | \$167,850   | Massachusetts General Hospital        |
| National Institutes of Health | Shank3 in Synaptic Function and Autism                                                                          | \$401,250   | Massachusetts Institute of Technology |
| National Institutes of Health | Integration of Emerging Technologies to Define the Spectrum of Structural Variation in Neuropsychiatric Disease | \$58,794    | Massachusetts General Hospital        |
| National Institutes of Health | Developmental Synaptopaties Associated with TSC, PTEN and SHANK3 Mutations                                      | \$331,349   | Boston Children's Hospital            |
| National Institutes of Health | Developmental Synaptopaties Associated with TSC, PTEN and SHANK3 Mutations                                      | \$216,154   | Boston Children's Hospital            |
| National Institutes of Health | Developmental Synaptopaties Associated with TSC, PTEN and SHANK3 Mutations                                      | \$386,566   | Boston Children's Hospital            |
| National Institutes of Health | Developmental Synaptopaties Associated with TSC, PTEN and SHANK3 Mutations                                      | \$89,954    | Boston Children's Hospital            |
| National Institutes of Health | Visual Circuit Regression and Its Rescue in RTT Mouse Models                                                    | \$564,049   | Boston Children's Hospital            |
| National Institutes of Health | Electrophysiological Response to Executive Control Training in Autism                                           | \$233,604   | Boston Children's Hospital            |
| National Institutes of Health | Mechanotransduction C. elegans                                                                                  | \$588,908   | Massachusetts General Hospital        |
| National Institutes of Health | Neuronal Activity-Dependent Regulation of MeCP2                                                                 | \$606,287   | Harvard Medical School                |
| National Institutes of Health | Organization of Excitatory and Inhibitory Circuits in ASD                                                       | \$409,250   | Boston University                     |
| National Institutes of Health | Neurobiological Mechanism of 15q11-13 Duplication<br>Autism Spectrum Disorder                                   | \$380,625   | Beth Israel Deaconess Medical Center  |

| Funder                        | Project Title                                                                                                                  | Funding   | Institution                                 |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------|---------------------------------------------|
| National Institutes of Health | Molecular causes of cognitive and autistic disabilities                                                                        | \$520,996 | Tufts University Boston                     |
| National Institutes of Health | Predicting Preschool Psychopathology with Brain Connectivity in Preterm Neonates                                               | \$169,998 | Washington University in St. Louis          |
| National Institutes of Health | Imaging Brain Function in Children with Autism<br>Spectrum Disorders with Diffuse Optical Tomography                           | \$141,178 | Washington University in St. Louis          |
| National Institutes of Health | Mechanisms of Brain Dysfunction in Tuberous Sclerosis                                                                          | \$333,594 | Washington University in St. Louis          |
| National Institutes of Health | An fMRI investigation of propagated intrinsic activity in early development and autism                                         | \$29,911  | Washington University in St. Louis          |
| National Institutes of Health | Regulation of Mammalian Social Behavior by the Gtf2i Family of Proteins                                                        | \$501,347 | Washington University in St. Louis          |
| National Institutes of Health | Brain Microstructure & Behavior in Newly-Diagnosed Toddlers/Preschoolers with ASD                                              | \$186,879 | Washington University in St. Louis          |
| National Institutes of Health | The Role of BK Channels in Neuropathology of Fragile X Syndrome                                                                | \$380,000 | Washington University in St. Louis          |
| National Institutes of Health | Mechanisms of Motor Skill Learning in the Fragile X Mouse Model                                                                | \$305,056 | University of Nebraska Medical Center       |
| National Institutes of Health | Maternal Immune Activation in a Genetic Mouse Model of ASD                                                                     | \$375,316 | University of Nebraska Medical Center       |
| National Institutes of Health | Signaling Pathways in Autism                                                                                                   | \$74,611  | University of Nebraska Medical Center       |
| National Institutes of Health | The Impact of Pten Signaling on Neuronal Form and Function                                                                     | \$405,000 | Dartmouth College                           |
| National Institutes of Health | Imaging adaptive cerebellar processing at cellular resolution in awake mice                                                    | \$428,215 | Princeton University                        |
| National Institutes of Health | Akt-mTOR Pathway Impact on Neural Stem Cell Fates                                                                              | \$380,133 | Richard Stockton College of New Jersey      |
| National Institutes of Health | Endoplasmic Reticulum Stress as a Novel Mechanism of<br>Synaptic Dysfunction in Autism-Associated NLGN3<br>R451C Human Neurons | \$37,840  | Rutgers Robert Wood Johnson Medical School  |
| National Institutes of Health | Connectivity of the Posterior Cerebellum                                                                                       | \$40,176  | Princeton University                        |
| National Institutes of Health | Neurodevelopmental Phenotypes in MLL mutant mice                                                                               | \$435,379 | Icahn School of Medicine At Mount Sinai     |
| National Institutes of Health | Optimizing Prediction of Social Deficits in Autism Spectrum Disorders                                                          | \$428,200 | State University of New York at Stony Brook |
| National Institutes of Health | The Role of Central Gain Control in Hyperacusis of Diverse Origin                                                              | \$58,408  | State University of New York at Buffalo     |
| National Institutes of Health | Monoallelic expression in neurons derived from induced pluripotent stem cells                                                  | \$417,500 | Albert Einsteign College of Medicine        |
| National Institutes of Health | Cell adhesion molecules in autism: a whole-brain study of genetic mouse models                                                 | \$473,750 | Cold Spring Harbor Laboratory               |
| National Institutes of Health | Neuronal Correlates of Autistic Traits in ADHD and Autism                                                                      | \$785,428 | New York University School of Medicine      |
| National Institutes of Health | The cognitive searchlight: TRN circuit dissection in health and disease                                                        | \$513,366 | New York University School of Medicine      |

| Funder                        | Project Title                                                                                                          | Funding   | Institution                                 |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------|---------------------------------------------|
| National Institutes of Health | Mitochondrial dysfunction due to aberrant mTOR-regulated mitophagy in autism                                           | \$183,568 | Columbia University                         |
| National Institutes of Health | Engrailed genes and cerebellum morphology, spatial gene expression and circuitry                                       | \$639,375 | Memorial Sloan-Kettering Cancer Center      |
| National Institutes of Health | The neurophysiology of sensory processing and multisensory integration in ASD                                          | \$410,019 | Syracuse University                         |
| National Institutes of Health | Prenatal environmental toxicants induce neuroinflammation causing autistic behaviors                                   | \$608,021 | Wadsworth Center                            |
| National Institutes of Health | Neuronal Adaptation and Plasticity after Chronic Disuse                                                                | \$423,750 | New York University School of Medicine      |
| National Institutes of Health | Disrupted auditory cortical plasticity and behavior in a model of Rett syndrome                                        | \$527,412 | Cold Spring Harbor Laboratory               |
| National Institutes of Health | Translation, Synchrony, and Cognition                                                                                  | \$379,689 | New York University                         |
| National Institutes of Health | Long non-coding RNAs in gene regulatory networks underlying Autism                                                     | \$253,538 | Icahn School of Medicine At Mount Sinai     |
| National Institutes of Health | Cdh8-dependent circuit development in autism                                                                           | \$423,750 | Icahn School of Medicine At Mount Sinai     |
| National Institutes of Health | Alternative splicing-mediated mechanisms of cortical interneuron maturation and circuit integration                    | \$96,751  | New York University School of Medicine      |
| National Institutes of Health | Functional architecture of a face processing area in the common marmoset                                               | \$48,576  | Weill Cornell Medical College               |
| National Institutes of Health | Experience-dependent plasticity of synaptic structure<br>Resubmission-1                                                | \$370,781 | New York University School of Medicine      |
| National Institutes of Health | Adult Neurogenesis and Executive Function                                                                              | \$417,500 | Albert Einsteign College of Medicine        |
| National Institutes of Health | Development of Behavioral and Neural Biomarkers for<br>Autism Spectrum Disorder Using a Genetically Defined<br>Subtype | \$232,184 | Icahn School of Medicine At Mount Sinai     |
| National Institutes of Health | Neuronal Basis of Vicarious Reinforcement Dysfunction in Autism Spectrum Disorder                                      | \$174,607 | Duke University                             |
| National Institutes of Health | Neural Circuits That Regulate Social Motivation in Autism                                                              | \$148,379 | University of North Carolina at Chapel Hill |
| National Institutes of Health | The Elongation Hypothesis of Autism                                                                                    | \$760,000 | University of North Carolina at Chapel Hill |
| National Institutes of Health | Early Social Communication Environment and Brain Development in Infants at Risk for Autism                             | \$88,597  | University of North Carolina at Chapel Hill |
| National Institutes of Health | Role of UBE3A in the Central Nervous System                                                                            | \$321,269 | University of North Carolina at Chapel Hill |
| National Institutes of Health | Fragile X Phenotypes Modulated by Altered Signaling to the Synaptic Cytoskeleton                                       | \$343,438 | Duke University                             |
| National Institutes of Health | Analysis of Shank3 Complete and Temporal and Spatial Specific Knockout Mice                                            | \$425,202 | Duke University                             |
| National Institutes of Health | Animal Model of Genetics and Social Behavior in Autism Spectrum Disorders                                              | \$234,157 | Duke University                             |
| National Institutes of Health | New Models For Astrocyte Function in Genetic Mouse<br>Models of Autism Spectrum Diso                                   | \$396,250 | Cleveland Clinic                            |

| Funder                        | Project Title                                                                                                | Funding   | Institution                          |
|-------------------------------|--------------------------------------------------------------------------------------------------------------|-----------|--------------------------------------|
| National Institutes of Health | Characterizing mechanistic heterogeneity across ADHD and Autism                                              | \$465,839 | Oregon Health & Science University   |
| National Institutes of Health | Molecular mechanisms of electrical synapse formation in vivo                                                 | \$249,000 | University of Oregon                 |
| National Institutes of Health | Magnetoencephalographic studies of lexical processing and abstraction in autism                              | \$310,373 | University of Pennsylvania           |
| National Institutes of Health | MEG Studies of Auditory Processing in Minimally/Non-<br>Verbal Children with ASD and Intellectual Disability | \$245,548 | Children's Hospital of Philadelphia  |
| National Institutes of Health | Understanding the Pathogenic Mechanisms of Rett Syndrome                                                     | \$343,116 | University of Pennsylvania           |
| National Institutes of Health | A Mitochondrial-Interneuronal Hypothesis of Autism                                                           | \$673,299 | Children's Hospital of Philadelphia  |
| National Institutes of Health | A longitudinal study of brain development in children with autism                                            | \$735,113 | Children's Hospital of Philadelphia  |
| National Institutes of Health | Electrophysiological Signatures of Language Impairment in Autism Spectrum Disord                             | \$318,519 | Children's Hospital of Philadelphia  |
| National Institutes of Health | Animal Model of Genetics and Social Behavior in Autism Spectrum Disorders                                    | \$457,126 | University of Pennsylvania           |
| National Institutes of Health | Thalamic activity and structure and surface neural oscillations in autism                                    | \$182,546 | Children's Hospital of Philadelphia  |
| National Institutes of Health | Role of 14-3-3epsilon in neurite initiation                                                                  | \$340,161 | Drexel University                    |
| National Institutes of Health | Neuronal Basis of Vicarious Reinforcement Dysfunction in Autism Spectrum Disorder                            | \$138,243 | University of Pennsylvania           |
| National Institutes of Health | Mechanisms of circuit failure and treatments in patient-<br>derived neurons in autism                        | \$406,250 | Brown University                     |
| National Institutes of Health | Autism-linked endosomal mechanisms in neuronal arborization and connectivity                                 | \$406,250 | Brown University                     |
| National Institutes of Health | Development of vision and attention in typical and ASD individuals                                           | \$282,879 | Brown University                     |
| National Institutes of Health | Profiles and Predictors of Pragmatic Language<br>Impairments in the FMR1 Premutation                         | \$36,454  | University of South Carolina         |
| National Institutes of Health | SLC7A5-MTOR Regulation of Neural Development                                                                 | \$442,241 | Clemson University                   |
| National Institutes of Health | FMRP and Pumilio co-regulate synaptogenesis by controlling Neuroglian expression                             | \$27,936  | Vanderbilt University                |
| National Institutes of Health | Research Project: Sensory and Multisensory<br>Contributions to Autism                                        | \$347,769 | Vanderbilt University                |
| National Institutes of Health | Neural networks for attention to internal and external sensory cues in ASD                                   | \$394,652 | Vanderbilt University Medical Center |
| National Institutes of Health | Endocannabinoids in social and repetitive behavioral domains                                                 | \$143,746 | Vanderbilt University                |
| National Institutes of Health | Genetic and Developmental Analyses of Fragile X<br>Mental Retardation Protein                                | \$383,322 | Vanderbilt University                |

| Funder                                                                                                      | Project Title                                                                                                   | Funding   | Institution                                     |  |
|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------|-------------------------------------------------|--|
| National Institutes of Health                                                                               | mTOR modulation of myelination                                                                                  | \$1       | Vanderbilt University                           |  |
| National Institutes of Health                                                                               | Peripersonal Space Representation as a Basis for Social Deficits in Autism and Schizophrenia Spectrum Disorders | \$237,000 | Vanderbilt University Medical Center            |  |
| National Institutes of Health                                                                               | mTOR modulation of myelination                                                                                  | \$179,658 | Vanderbilt University Medical Center            |  |
| National Institutes of Health                                                                               | Sensory contributions to autism spectrum disorders and links to social responsiveness                           | \$28,234  | Vanderbilt University                           |  |
| National Institutes of Health                                                                               | The role of Foxp1-regulated signaling pathways in brain development and behavior                                | \$405,000 | University of Texas Southwestern Medical Center |  |
| National Institutes of Health                                                                               | Role of Brg1 in Activity-Induced Neuronal Gene Expression and Synaptic Plasticity                               | \$365,696 | University of Texas Southwestern Medical Center |  |
| National Institutes of Health                                                                               | Molecular Pathogenesis Studies of Rett Syndrome                                                                 | \$346,719 | Baylor College of Medicine                      |  |
| National Institutes of Health                                                                               | Molecular mechanisms of the synaptic organizer alphaneurexin                                                    | \$379,844 | University of Texas Medical Branch at Galveston |  |
| National Institutes of Health                                                                               | Mechanisms underlying the Cerebellar Contribution to Autism in Mouse Models of Tuberous Sclerosis Complex       | \$190,458 | University of Texas Southwestern Medical Center |  |
| National Institutes of Health                                                                               | Hippocampal mechanisms in observational learning                                                                | \$397,754 | Baylor College of Medicine                      |  |
| National Institutes of Health                                                                               | Functional dissection of mammalian vocal communication                                                          | \$343,454 | University of Texas Southwestern Medical Center |  |
| National Institutes of Health                                                                               | The Nature of Astrocyte Heterogeneity in RTT                                                                    | \$196,974 | Baylor College Of Medicine                      |  |
| National Institutes of Health                                                                               | Rescuing Motor Deficits In SHANK3 Releated Disorders                                                            | \$178,190 | Baylor College Of Medicine                      |  |
| National Institutes of Health                                                                               | Role of MEF2 and neural activity in cortical synaptic weakening and elimination                                 | \$394,331 | University of Texas Southwestern Medical Center |  |
| National Institutes of Health                                                                               | Bidirectional Tyrosine Kinase Signaling                                                                         | \$523,695 | University of Texas Southwestern Medical Center |  |
| National Institutes of Health                                                                               | Brain Network Development in Normal and Autistic Children                                                       | \$187,164 | University of Utah                              |  |
| National Institutes of Health                                                                               | Multiscale Genetic Connectivity of Primate Social Circuits                                                      | \$643,674 | University of Utah                              |  |
| National Institutes of Health                                                                               | Network Abnormalities in Autism                                                                                 | \$77,313  | University of Vermont                           |  |
| National Institutes of Health                                                                               | Eyeblink conditioning in school-aged children with ASD                                                          | \$497,699 | Seattle Children's Hospital                     |  |
| National Institutes of Health                                                                               | Inhibitory dysfunction in autism                                                                                | \$552,541 | University of Washington                        |  |
| National Institutes of Health                                                                               | Protein Interaction Network Analysis to Test the Synaptic Hypothesis of Autism                                  | \$244,566 | Seattle Children's Hospital                     |  |
| National Institutes of Health                                                                               | Maximizing Biospecimen Collection from Children with Mental Health Conditions                                   | \$266,785 | Group Health Cooperative                        |  |
| National Institutes of Health                                                                               | Executive Function in Children with Typical and Atypical Language Abilities                                     | \$564,177 | University of Wisconsin-Madison                 |  |
| cational Institutes of Health  Characterizing Lexical Processing in Toddlers with Autism Spectrum Disorders |                                                                                                                 | \$533,529 | University of Wisconsin-Madison                 |  |

| Funder                                                                               | Project Title                                                                                                                                                        | Funding   | Institution                             |  |
|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------------------------------|--|
| National Institutes of Health                                                        | Spastic paraplegia, neurodegeneration and autism: possible role for AT-1/SLC33A1?                                                                                    | \$330,978 | University of Wisconsin-Madison         |  |
| National Institutes of Health                                                        | Translational Regulation of Adult Neural Stem Cells                                                                                                                  | \$372,646 | University of Wisconsin-Madison         |  |
| National Institutes of Health                                                        | Coordinate actions between methyl-CpG binding proteins in neuronal development                                                                                       | \$191,250 | University of Wisconsin-Madison         |  |
| National Institutes of Health                                                        | Tools for manipulating local protein synthesis in the brain                                                                                                          | \$148,500 | University of Toronto                   |  |
| National Science Foundation                                                          | BRIGE: Emotion mapping of children through human-<br>robot interaction and affective computing                                                                       | \$0       | University of Louisville                |  |
| National Science Foundation                                                          | SHB: Type II (INT): Synthesizing self-model and mirror feedback imageries with applications to behavior modeling for children with autism                            | \$0       | University of Kentucky                  |  |
| National Science Foundation                                                          | CAREER: Typical and atypical development of brain regions for theory of mind                                                                                         | \$0       | Massachusetts Institute of Technology   |  |
| National Science Foundation                                                          | MRI: Acquistion of an Infrared Eye Tracker to Study the<br>Emergence, Use, Loss, and Requisition of<br>Communication Skills                                          | \$0       | Emerson College                         |  |
| National Science Foundation                                                          | Collaborative Research: Revealing the Invisible: Data-<br>Intensive Research Using Cognitive, Psychological, and<br>Physiological Measures to Optimize STEM Learning | \$0       | Massachusetts Institute of Technology   |  |
| National Science Foundation                                                          | Collaborative Research: Revealing the Invisible: Data-<br>Intensive Research Using Cognitive, Psychological, and<br>Physiological Measures to Optimize STEM Learning | \$0       | TERC Inc                                |  |
| National Science Foundation                                                          | Collaborative Research: Revealing the Invisible: Data-<br>Intensive Research Using Cognitive, Psychological, and<br>Physiological Measures to Optimize STEM Learning | \$0       | Landmark College                        |  |
| National Science Foundation                                                          | Network Optimization of Functional Connectivity in<br>Neuroimaging for Differential Diagnosis of Brain<br>Diseases                                                   | \$0       | University of Washington                |  |
| Simons Foundation                                                                    | Rescuing synaptic and circuit deficits in an Angelman syndrome mouse model                                                                                           | \$0       | University of Arizona                   |  |
| Simons Foundation                                                                    | Modeling multiple heterozygous genetic lesions in autism using Drosophila melanogaster                                                                               | \$0       | University of California, Los Angeles   |  |
| Simons Foundation                                                                    | Illuminating the role of glia in a zebrafish model of Rett syndrome                                                                                                  | \$125,000 | University of California, San Diego     |  |
| Simons Foundation                                                                    | Delineating the role of Ras/MAPK signaling in 16p11.2 phenotypes                                                                                                     | \$250,000 | University of California, San Francisco |  |
| Simons Foundation                                                                    | Electrophysiological consequences of SCN2A mutations found in ASD                                                                                                    | \$0       | University of California, San Francisco |  |
| Simons Foundation                                                                    | In vivo approach to screen ASD allele functions in cortical interneurons                                                                                             | \$62,500  | University of California, San Francisco |  |
| Simons Foundation Novel technology for behavioral phenotyping of autism mouse models |                                                                                                                                                                      | \$75,000  | California Institute of Technology      |  |

| Funder            | Project Title                                                                                      | Funding   | Institution                             |  |
|-------------------|----------------------------------------------------------------------------------------------------|-----------|-----------------------------------------|--|
| Simons Foundation | Mechanisms that Connect Autism with Homeostatic<br>Synaptic Plasticity                             | \$125,000 | University of California, San Francisco |  |
| Simons Foundation | Linking circuit dynamics and behavior in a rat model of autism                                     | \$39,613  | University of California, San Francisco |  |
| Simons Foundation | Immune signaling in the developing brain in mouse models of ASD                                    | \$200,000 | University of California, Davis         |  |
| Simons Foundation | How do autism-related mutations affect basal ganglia function?                                     | \$62,500  | University of California, Berkeley      |  |
| Simons Foundation | Exploring the Intersection of Autism and Homeostatic Synaptic Plasticity                           | \$0       | University of California, San Francisco |  |
| Simons Foundation | Do VIP interneurons drive abnormal prefrontal circuit function in autism?                          | \$75,000  | University of California, San Francisco |  |
| Simons Foundation | The Role of Cation/Proton Exchanger NHE9 in Autism                                                 | \$62,500  | University of California, San Francisco |  |
| Simons Foundation | Chromatin remodeling in autism                                                                     | \$250,000 | Stanford University                     |  |
| Simons Foundation | A gene-driven systems approach to identifying autism pathology                                     | \$749,918 | University of California, San Francisco |  |
| Simons Foundation | Neurobiology of Rai1, a critical gene for syndromic ASDs                                           | \$175,000 | Stanford University                     |  |
| Simons Foundation | BAZ1B Haploinsufficiency and the Neuro-phenotypes of Williams Syndrome                             | \$0       | University of California, Santa Barbara |  |
| Simons Foundation | Translational dysregulation of the RhoA pathway in autism                                          | \$250,605 | University of California, San Diego     |  |
| Simons Foundation | Comparison of cortical circuit dysfunction in ASD model mice                                       | \$125,000 | University of California, Berkeley      |  |
| Simons Foundation | Neural mechanisms of social reward in mouse models of autism                                       | \$249,994 | Stanford University                     |  |
| Simons Foundation | Neuroligin function in the prefrontal cortex and autism pathogenesis                               | \$250,000 | Stanford University                     |  |
| Simons Foundation | Decoding Affective Prosody and Communication Circuits in Autism                                    | \$287,870 | Stanford University                     |  |
| Simons Foundation | Parameterizing Neural Habituation in ASD with Sensory<br>Overresponsivity                          | \$124,973 | University of California, Los Angeles   |  |
| Simons Foundation | Linking cortical circuit dysfunction and abnormal behavior in genetic mouse models of autism       | \$0       | University of California, Los Angeles   |  |
| Simons Foundation | An investigation of inductive learning in autism                                                   | \$0       | University of California, Berkeley      |  |
| Simons Foundation | Explore the pathogenic role of mTor signaling in chr16p11.2 microdeletion                          | \$0       | Children's Hospital Los Angeles         |  |
| Simons Foundation | Disrupted Network Activity in Neonatal Cortex of Mouse Models of Autism                            | \$62,500  | Yale University                         |  |
| Simons Foundation | Restoring GABA inhibition in a Rett syndrome mouse model by tuning a kinase-regulated Cl- rheostat | \$66,839  | Yale University                         |  |
| Simons Foundation | Role of GABA interneurons in a genetic model of autism                                             | \$0       | Yale University                         |  |

| Funder            | Project Title                                                                                                                                          | Funding   | Institution                                 |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------------------------------------|
| Simons Foundation | Disruption of Cortical Projection Neurons, Circuits, and Cognition in ASD                                                                              | \$248,843 | George Washington University                |
| Simons Foundation | Dysregulation of mTor/Tsc in 22q11DS Autism Model                                                                                                      | \$125,000 | George Washington University                |
| Simons Foundation | Immune p38-alpha MAPK activation: Convergent mechanism linking autism models                                                                           | \$214,613 | Florida Atlantic University                 |
| Simons Foundation | Impact of Pten mutations: brain growth trajectory and scaling of cell types                                                                            | \$0       | Scripps Research Institute                  |
| Simons Foundation | CHD8 and beta-catenin signaling in autism                                                                                                              | \$62,500  | University of Chicago                       |
| Simons Foundation | Role of LIN28/let-7 axis in autism                                                                                                                     | \$0       | Johns Hopkins University School of Medicine |
| Simons Foundation | Understanding brain disorders related to the 15q11.2 chromosomal region                                                                                | \$250,000 | Johns Hopkins University School of Medicine |
| Simons Foundation | Probing perception and sensorimotor coupling in mouse models of autism                                                                                 | \$75,000  | Harvard University                          |
| Simons Foundation | Optical imaging of circuit dynamics in autism models in virtual reality                                                                                | \$0       | Harvard Medical School                      |
| Simons Foundation | Quantification of Learning Algorithm Performance to Inputs of Variable Complexity: Implications for Emotional Intelligence in Autism Spectrum Disorder | \$15,791  | Boston Children's Hospital                  |
| Simons Foundation | Translational dysregulation in autism pathogenesis and therapy                                                                                         | \$250,000 | Massachusetts General Hospital              |
| Simons Foundation | The role of PTCHD1 in thalamic reticular nucleus function and ASD                                                                                      | \$250,000 | Massachusetts Institute of Technology       |
| Simons Foundation | Molecular consequences of strong effect ASD mutations including 16p11.2                                                                                | \$250,000 | Massachusetts General Hospital              |
| Simons Foundation | Disrupted Homeostatic Synaptic Plasticity in Autism Spectrum Disorders.                                                                                | \$250,000 | Brandeis University                         |
| Simons Foundation | Characterizing Sensory Hypersensitivities in Autism                                                                                                    | \$230,098 | Massachusetts General Hospital              |
| Simons Foundation | Role of the Thalamic Reticular Nucleus in ASD                                                                                                          | \$0       | Massachusetts Institute of Technology       |
| Simons Foundation | The IL-17 pathway in the rodent model of autism spectrum disorder                                                                                      | \$90,000  | University of Massachusetts Medical School  |
| Simons Foundation | Dissecting primary motor cortex circuit dysfunction in a mouse model of MeCP2 duplication syndrome                                                     | \$137,500 | Brigham and Women's Hospital                |
| Simons Foundation | A novel window into ASD through genetic targeting of striosomes - Core                                                                                 | \$175,141 | Massachusetts Institute of Technology       |
| Simons Foundation | Understanding somatosensory deficits in Autism Spectrum Disorder                                                                                       | \$125,000 | Harvard University                          |
| Simons Foundation | Molecular characterization of temperature sensitive circuits in the mouse                                                                              | \$180,000 | Harvard University                          |
| Simons Foundation | Defining the Translational Landscape in Mouse Models of Autism - Core                                                                                  | \$68,750  | University of Massachusetts Medical School  |

| Funder            | Project Title                                                                                       |           | Institution                                 |
|-------------------|-----------------------------------------------------------------------------------------------------|-----------|---------------------------------------------|
| Simons Foundation | Microglia in models of normal brain development, prenatal immune stress and genetic risk for autism | \$200,000 | Harvard Medical School                      |
| Simons Foundation | Development of corticothalamic circuits of prefrontal cortex in mouse models of autism              | \$75,000  | Boston Children's Hospital                  |
| Simons Foundation | Analysis of oxytocin function in brain circuits processing social cues                              | \$62,500  | Harvard University                          |
| Simons Foundation | PsychoGenics Inc.                                                                                   | \$0       | PsychoGenics Inc.                           |
| Simons Foundation | Roles of pro-inflammatory Th17 cells in autism                                                      | \$124,846 | New York University                         |
| Simons Foundation | Role of a novel PRCI complex in neurodevelopment and ASD neurobiology                               | \$225,000 | New York University School of Medicine      |
| Simons Foundation | Genetic rescue of a mouse model of Fragile X by targeted deletion of RICTOR                         | \$70,000  | Albert Einsteign College of Medicine        |
| Simons Foundation | Role of the hippocampal CA2 region in autism                                                        | \$125,000 | Columbia University Medical Center          |
| Simons Foundation | Neural and cognitive discoordination in autism-related mouse models                                 | \$0       | New York University                         |
| Simons Foundation | Top-down dynamics in autism                                                                         | \$210,000 | Rockefeller University                      |
| imons Foundation  | CNTNAP2 regulates production, migration and organization of cortical neurons                        | \$0       | Memorial Sloan-Kettering Cancer Center      |
| Simons Foundation | A novel window into ASD through genetic targeting of striosomes - Project 1                         | \$72,271  | Cold Spring Harbor Laboratory               |
| Simons Foundation | Interneuron subtype-specific malfunction in autism spectrum disorders                               | \$120,000 | New York University School of Medicine      |
| Simons Foundation | Cortico-striatal dysfunction in the eIF4E transgenic mouse model of autism                          | \$0       | New York University                         |
| Simons Foundation | Autophagy pathway alterations in lymphocytes: Potential biomarkers for autism?                      | \$79,551  | Columbia University                         |
| Simons Foundation | The intersection between habit and anxiety in a genetic model of autism                             | \$125,000 | Cold Spring Harbor Laboratory               |
| Simons Foundation | Neuronal translation in Tsc2+/- and Fmr1-/y mutant ASD mouse models                                 | \$124,999 | Columbia University                         |
| Simons Foundation | Visualizing neural circuits of social sensory processing                                            | \$125,000 | University of North Carolina at Chapel Hill |
| Simons Foundation | SCN2A mouse                                                                                         | \$0       | Duke University Medical Center              |
| Simons Foundation | Identification of shared transcriptional profiles with three high-confidence autism mouse models    | \$100,000 | University of North Carolina at Chapel Hill |
| Simons Foundation | Correcting excitatory-inhibitory imbalance in autism                                                | \$112,500 | University of North Carolina at Chapel Hill |
| Simons Foundation | Does Astrocyte Dysfunction Contribute to Synaptic Pathologies in Autism?                            | \$75,000  | Duke University Medical Center              |
| Simons Foundation | nons Foundation A Novel Transcriptional Cascade Involved in Brain Overgrowth in ASD                 |           | Case Western Reserve University             |

| Funder            | Project Title                                                                                                      | Funding   | Institution                                      |
|-------------------|--------------------------------------------------------------------------------------------------------------------|-----------|--------------------------------------------------|
| Simons Foundation | Identification of genes responsible for a genetic cause of autism                                                  | \$125,000 | Case Western Reserve University                  |
| Simons Foundation | Assessing thalamocortical circuit function in TSC1 and NHE6 mouse models                                           | \$75,000  | Brown University                                 |
| Simons Foundation | Analysis of Shank3 ubiquitination regulation by RNF31 phosphorylation                                              | \$70,000  | Medical University of South Carolina             |
| Simons Foundation | Mouse Model of Dup15q Syndrome                                                                                     | \$0       | Texas AgriLife Research                          |
| Simons Foundation | Hippocampal mechanisms of social learning in animal models of autism                                               | \$0       | Baylor College of Medicine                       |
| Simons Foundation | Canonical Computations in Autism                                                                                   | \$137,070 | Baylor College of Medicine                       |
| Simons Foundation | Defining the Translational Landscape in Mouse Models of Autism - Project 1                                         | \$68,750  | University of Texas Southwestern Medical Center  |
| Simons Foundation | Foxp1 orchestration of neuronal function in the striatum                                                           | \$73,345  | University of Texas Southwestern Medical Center  |
| Simons Foundation | The Medical College of Wisconsin, Inc.                                                                             | \$79,243  | The Medical College of Wisconsin, Inc.           |
| Simons Foundation | Speech Phenotype in 16p11.2                                                                                        | \$0       | Murdoch Childrens Research Institute             |
| Simons Foundation | Functional and behavioral analysis of zebrafish ASD models                                                         | \$74,975  | University of Queensland                         |
| Simons Foundation | Probing the development and reversibility of autism-<br>related phenotypes in SETD5 conditional knockout mice      | \$99,730  | Institute of Science and Technology Austria      |
| Simons Foundation | Brain imaging of treatment response                                                                                | \$124,334 | The Hospital for Sick Children                   |
| Simons Foundation | MAGEL2, a candidate gene for autism and Prader-Willi syndrome                                                      | \$53,753  | University of Alberta                            |
| Simons Foundation | Convergent signaling pathways linking PTEN and MeCP2, two risk genes for autism spectrum disorders                 | \$67,200  | Charité – Medical University of Berlin           |
| Simons Foundation | Translational control by RBFox1: investigating its mechanisms and functions                                        | \$0       | Trinity College Dublin, The University of Dublin |
| Simons Foundation | Role of Caspr2 (CNTNAP2) in brain circuits- Core                                                                   | \$0       | Weizmann Institute of Science                    |
| Simons Foundation | Neurobiological basis of connectivity deficits in autism                                                           | \$67,436  | Fondazione Istituto Italiano di Tecnologia       |
| Simons Foundation | Do toll-like receptor innate immune responses act via autism risk genes to alter neuronal morphology and function? | \$70,000  | Institute of Molecular Biology, Academia Sinica  |
| Simons Foundation | Role of Caspr2 (CNTNAP2) in brain circuits - Project 1                                                             | \$0       | King's College London                            |
| Simons Foundation | Identifying autism-associated signaling pathways regulated by CHD8 in vivo                                         | \$62,500  | King's College London                            |